Effects of pulsed bias on TiCN coatings by hybrid deposition of arc ion plating and magnetron sputtering

Meidong Huang¹, Mengmeng Wang¹, Xiying Fan¹, Yunke Li², Xue Wang¹

¹Tianjin Normal University, Tianjin, China ²Tijin Normal University, Tianjin, China

scmdfxwf@163.com

Hybrid deposition, consisting of arc ion plating and magnetron sputtering, is employed to fabricate TiCN films on high speed steel substrates, where a Ti target is evaporated by arc and a carbon target is sputtered simultaneously. The influence of pulsed bias, superimposed with a fixed direct-current bias and applied to the substrates, was investigated in terms of the microstructure and mechanical properties of the as-deposited films. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were adopted to characterize the microstructure and morphology. Hardness and elastic modulus of the films were measured by a Vickers tester. A friction and wear tester is used to characterize the tribological properties. XRD data show that the films are crystalline under different biases. The surface quality of the films by the hybrid deposition is improved with respect to that of the films deposited by only arc ion plating. High hardness of TiCN indicates that the mechanical properties of the films can be enhanced by hybrid ion plating. The effects of pulsed bias on the structure and mechanical properties of the TiCN films have been investigated and discussed.

Keywords
Pulsed bias
Arc ion plating
Magnetron sputtering
Hybrid deposition
TiCN film