Inactivation of E. coli in Water Using Pulsed Dielectric Barrier Discharge in a Coaxial Reactor

Rosendo Pena-Eguiluz¹, Alma Neli Hernandez Arias², Bemnjamin Gonzalo Rodríguez-Méndez³, Regulo Lopez-Callejas⁴, Raul Valencia-Alvarado³, Antonio Mercado-Cabrera³, Arturo Eduardo Muñoz Castro³, Samuel Roberto Barocio Delgado³, Anibal de la Piedad Beneitez⁵

¹Inst. Nac. de Investigaciones Nucleares, ocoyoacac, Mexico, Mexico ²Instituto Tecnologico de Toluca, Metepec, Edo de Mexico, Mexico ³Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Mexico, Mexico ⁴Instituto Nacional de Investigaciones Nucleares, Ocoyoacac. Mexico, Mexico ⁵Instituto Tecnologico de Toluca, Metepec, Mexico, Mexico

regulo.lopez@inin.gob.mx

Results from an experimental study about the elimination of ATCC 8739 Escherichia coli bacteria in water by means of Pulsed Dielectric Barrier Discharge (PDBD) atmospheric pressure plasmas are presented. The plasmas are generated by an adjustable power source capable to supply high voltage (1-30 kV) pulses 1-50 µs long at 100-1000 Hz frequencies. A coaxial reactor formed by a one gas inlet ~30 cm³ cylindrical stainless steel chamber and a straight central filament has been selected for the process. The bacterial concentration per ml was varied from 10^3 hasta 10^8. Oxygen was added to the gas supply in order to increase the ozone content in the process, achieving an inactivation percentage in the order of 80%. Later on, the oxygen injection was modulated so as to suppress it alternately for specific time intervals, leading to elimination percentages above 99%.

Keywords
Pulsed Dielectric Barrier Discharge atmospheric pressure plasmas
Escherichia coli bacteria
ozone
gas flow modulation